LC 2015: PAPER 1

QUESTION 1 (25 MARKS) Question 1 (a)

Bounce 1 is obtained by multiplying 2 m by $\frac{3}{4}$ to give a height of $\frac{3}{2}$ m.

This process is repeated up until the fourth bounce.

Bounce	0	1	2	3	4
Height (m)	$\frac{2}{1}$	$\frac{2}{1} \times \frac{3}{4} = \frac{3}{2}$	$\frac{3}{2} \times \frac{3}{4} = \frac{9}{8}$	$\frac{9}{8} \times \frac{3}{4} = \frac{27}{32}$	$\frac{27}{32} \times \frac{3}{4} = \frac{81}{128}$

MARKING SCHEME NOTES

Question 1 (a) [Scale 5C (0, 2, 4, 5)]

2: • Any term correct

4: • Any two terms correct

Note: Dividing by $\frac{3}{4}$ gets high partial credit at most. Correct decimal values high partial at most.

Question 1 (b)

Add up the distances travelled by the ball going up and down. Make sure you multiply the distances moved by the bounced balls by 2 (up and down).

$$S = 2 + 2\left(\frac{3}{2} + \frac{9}{8} + \frac{27}{32} + \frac{81}{128}\right) = \frac{653}{64} \text{ m [Using calculator]}$$

or
$$S = 2 + 2\left(\frac{3}{2} + \frac{9}{8} + \frac{27}{32} + \frac{81}{128}\right) = 2 + \left(3 + \frac{9}{4} + \frac{27}{16} + \frac{81}{64}\right)$$
$$[a = 3, r = \frac{3}{4}, n = 4]$$
$$S = 2 + S_4 = 2 + \frac{3\left(1 - \left(\frac{3}{4}\right)^4\right)}{1 - \frac{3}{4}} = \frac{653}{64} \text{ m}$$

FORMULAE AND TABLES BOOK Sequences and series: Geometric series [page 22] $\alpha(1 - r^n)$

$$S_n = \frac{a(1-r^n)}{1-r}$$

a is the first term *r* is the common ratio

MARKING SCHEME NOTES

Question 1 (b) [Scale 10C (0, 4, 8, 10)] NOTE: two solutions

1st solution

- 4: Indicates addition of terms
- 8: Recognises double distance after first hop
 - Sum of all rises or drops

or

2nd solution

- 4: Indicates addition of terms
 - Indicates Geometric Progression
- 8: Correct Geometric Progression formula with correct substitution

Question 1 (c)

$$\begin{split} S_{\infty} &= 2 + (3 + \frac{9}{4} + \frac{27}{16} + \frac{81}{64} + \dots) \leftarrow & \text{This bracket is an infinite} \\ & [a = 3, r = \frac{3}{4}] & \text{geometric series with} \\ & |r| < 1. \end{split}$$

$$S_{\infty} &= 2 + \frac{3}{1 - \frac{3}{4}} = 14 \text{ m}$$

FORMULAE AND TABLES BOOK Sequences and series: Geometric series [page 22]

$$S_{\infty} = \frac{a}{1-r}, |r| < 1$$

a is the first term *r* is the common ratio

MARKING SCHEME NOTES Question 1 (c) [Scale 10C (0, 4, 8, 10)]

- 4: Recognition of sum to infinity
 - S_{∞} formula
- 8: $\operatorname{Correct}^{\infty}$ formula with correct substitution
 - Sum of all rises or drops