LC 2015: Paper 1

Question 1 (25 marks)

Question 1 (a)
Bounce 1 is obtained by multiplying 2 m by $\frac{3}{4}$ to give a height of $\frac{3}{2} \mathrm{~m}$.
This process is repeated up until the fourth bounce.

Bounce	0	1	2	3	4
Height (m)	$\frac{2}{1}$	$\frac{2}{1} \times \frac{3}{4}=\frac{3}{2}$	$\frac{3}{2} \times \frac{3}{4}=\frac{9}{8}$	$\frac{9}{8} \times \frac{3}{4}=\frac{27}{32}$	$\frac{27}{32} \times \frac{3}{4}=\frac{81}{128}$

Marking Scheme Notes

Question 1 (a) [Scale 5C (0, 2, 4, 5)]
2: - Any term correct
4: - Any two terms correct
Note: Dividing by $\frac{3}{4}$ gets high partial credit at most. Correct decimal values high partial at most.

Question 1 (b)
Add up the distances travelled by the ball going up and down. Make sure you multiply the distances moved by the bounced balls by 2 (up and down).
$S=2+2\left(\frac{3}{2}+\frac{9}{8}+\frac{27}{32}+\frac{81}{128}\right)=\frac{653}{64} \mathrm{~m}$ [Using calculator]
or
$S=2+2\left(\frac{3}{2}+\frac{9}{8}+\frac{27}{32}+\frac{81}{128}\right)=2+\left(3+\frac{9}{4}+\frac{27}{16}+\frac{81}{64}\right)$ $\left[a=3, r=\frac{3}{4}, n=4\right]$
$S=2+S_{4}=2+\frac{3\left(1-\left(\frac{3}{4}\right)^{4}\right)}{1-\frac{3}{4}}=\frac{653}{64} \mathrm{~m}$

Formulae and Tables Book

Sequences and series:

Geometric series [page 22]

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

a is the first term
r is the common ratio

Marking Scheme Notes

Question 1 (b) [Scale 10C ($\mathbf{0}, \mathbf{4}, 8,10$)] NOTE: two solutions
1st solution
4: - Indicates addition of terms
8: - Recognises double distance after first hop

- Sum of all rises or drops
or
2nd solution
4: - Indicates addition of terms
- Indicates Geometric Progression

8: - Correct Geometric Progression formula with correct substitution

Question 1 (c)

$$
\begin{array}{cl}
S_{\infty}=2+\left(3+\frac{9}{4}+\frac{27}{16}+\frac{81}{64}+\ldots\right) \leftarrow & \text { This bracket is an infinite } \\
{\left[a=3, r=\frac{3}{4}\right]} & \text { geometric series with } \\
|r|<1 .
\end{array}
$$

$S_{\infty}=2+\frac{3}{1-\frac{3}{4}}=14 \mathrm{~m}$

Formulae and Tables Book

Sequences and series:
Geometric series [page 22]

$$
S_{\infty}=\frac{a}{1-r},|r|<1
$$

a is the first term
r is the common ratio

Marking Scheme Notes

Question 1 (c) [Scale 10C (0, 4, 8, 10)]
4: - Recognition of sum to infinity

- S_{∞} formula

8: - Correct formula with correct substitution

- Sum of all rises or drops

